
struc2vec: Learning Node Representations from Structural
Identity

Leonardo F. R. Ribeiro
Federal University of Rio de Janeiro

Systems Eng. and Comp. Science Dep.
leo@land.ufrj.br

Pedro H. P. Saverese
Federal University of Rio de Janeiro

Systems Eng. and Comp. Science Dep.
savarese@land.ufrj.br

Daniel R. Figueiredo
Federal University of Rio de Janeiro

Systems Eng. and Comp. Science Dep.
daniel@land.ufrj.br

ABSTRACT
Structural identity is a concept of symmetry in which network
nodes are identi�ed according to the network structure and their
relationship to other nodes. Structural identity has been studied
in theory and practice over the past decades, but only recently
has it been addressed with representational learning techniques.
�is work presents struc2vec, a novel and �exible framework for
learning latent representations for the structural identity of nodes.
struc2vec uses a hierarchy to measure node similarity at di�er-
ent scales, and constructs a multilayer graph to encode structural
similarities and generate structural context for nodes. Numerical
experiments indicate that state-of-the-art techniques for learning
node representations fail in capturing stronger notions of structural
identity, while struc2vec exhibits much superior performance in
this task, as it overcomes limitations of prior approaches. As a con-
sequence, numerical experiments indicate that struc2vec improves
performance on classi�cation tasks that depend more on structural
identity.

CCS CONCEPTS
•Computing methodologies→Unsupervised learning; Learn-
ing latent representations; •Arti�cial Intelligence→ Learning;

KEYWORDS
feature learning; node embeddings; structural identity

1 INTRODUCTION
In almost all networks, nodes tend to have one or more functions
that greatly determine their role in the system. For example, individ-
uals in a social network have a social role or social position [11, 19],
while proteins in a protein-protein interaction (PPI) network exert
speci�c functions [1, 22]. Intuitively, di�erent nodes in such net-
works may perform similar functions, such as interns in the social
network of a corporation or catalysts in the PPI network of a cell.
�us, nodes can o�en be partitioned into equivalent classes with
respect to their function in the network.

Although identi�cation of such functions o�en leverage node
and edge a�ributes, a more challenging and interesting scenario

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 ACM. 978-1-4503-4887-4/17/08. . .$15.00
DOI: 10.1145/3097983.3098061

u

d

e

b

a

c

network v

x

w

t

z

y

Figure 1: An example of two nodes (u and v) that are struc-
turally similar (degrees 5 and 4, connected to 3 and 2 trian-
gles, connected to the rest of the network by two nodes), but
very far apart in the network.

emerges when node function is de�ned solely by the network struc-
ture. In this context, not even the labels of the nodes ma�er but
just their relationship to other nodes (edges). Indeed, mathematical
sociologists have worked on this problem since the 1970s, de�n-
ing and computing structural identity of individuals in social net-
works [11, 17, 19]. Beyond sociology, the role of webpages in the
webgraph is another example of identity (in this case, hubs and
authorities) emerging from the network structure, as de�ned by
the celebrated work of Kleinberg [8].

�e most common practical approaches to determine the struc-
tural identity of nodes are based on distances or recursions. In
the former, a distance function that leverages the neighborhood of
the nodes is used to measure the distance between all node pairs,
with clustering or matching then performed to place nodes into
equivalent classes [5, 9]. In the later, a recursion with respect to
neighboring nodes is constructed and then iteratively unfolded
until convergence, with �nal values used to determine the equiva-
lent classes [3, 8, 26]. While such approaches have advantages and
disadvantages, we provide an alternative methodology, one based
on unsupervised learning of representations for the structural iden-
tity of nodes (to be presented). Recent e�orts in learning latent
representations for nodes in networks have been quite successful
in performing classi�cation and prediction tasks [6, 14, 16, 23]. In
particular, these e�orts encode nodes using as context a generalized
notion of their neighborhood (e.g., w steps of a random walk, or
nodes with neighbors in common). In a nutshell, nodes that have
neighborhoods with similar sets of nodes should have similar latent
representations. But neighborhood is a local concept de�ned by
some notion of proximity in the network. �us, two nodes with
neighborhoods that are structurally similar but that are far apart
will not have similar latent representations. Figure 1 illustrates the
problem, where nodes u and v play similar roles (i.e., have similar
local structures) but are very far apart in the network. Since their
neighborhoods have no common nodes, recent approaches cannot
capture their structural similarity (as we soon show).

It is worth noting why recent approaches for learning node
representations such as DeepWalk [16] and node2vec [6] succeed in
classi�cation tasks but tend to fail in structural equivalence tasks.
�e key point is that many node features in most real networks
exhibit a strong homophily (e.g., two blogs with the same political
inclination are much more likely to be connected than at random).
Neighbors of nodes with a given feature are more likely to have the
same feature. �us, nodes that are “close” in the network and in
the latent representation will tend to share features. Likewise, two
nodes that are “far” in the network will tend to be separated in the
latent representation, independent of their local structure. �us,
structural equivalence will not properly be captured in the latent
representation. However, if classi�cation is performed on features
that depend more on structural identity and less on homophily,
then such recent approaches are likely to be outperformed by latent
representations that be�er capture structural equivalence (as we
soon show).

Our main contribution is a �exible framework for learning latent
representations for the structural identity of nodes, called struc2vec.
It is an alternative and powerful tool to the study of structural
identity through latent representations. �e key ideas of struc2vec
are:

• Assess structural similarity between nodes independently
of node and edge a�ributes as well as their position in
the network. �us, two nodes that have a similar local
structure will be considered so, independent of network
position and node labels in their neighborhoods. Our ap-
proach also does not require the network to be connected,
and identi�es structurally similar nodes in di�erent con-
nected components.

• Establish a hierarchy to measure structural similarity, al-
lowing progressively more stringent notions of what it
means to be structurally similar. In particular, at the bot-
tom of the hierarchy, structural similarity between nodes
depend only on their degrees, while at the top of the hier-
archy similarity depends on the entire network (from the
viewpoint of the node).

• Generates random contexts for nodes, which are sequences
of structurally similar nodes as observed by a weighted
random walk traversing a multilayer graph (and not the
original network). �us, two nodes that frequently appear
with similar contexts will likely have similar structure.
Such context can be leveraged by language models to learn
latent representation for the nodes.

We implement an instance of struc2vec and show its potential
through numerical experiments on toy examples and real networks,
comparing its performance with DeepWalk [16] and node2vec [6] –
two state-of-the-art techniques for learning latent representations
for nodes, and with RolX [7] – a recent approach to identify roles
of nodes. Our results indicate that while DeepWalk and node2vec
fail to capture the notion of structural identity, struc2vec excels on
this task – even when the original network is subject to strong ran-
dom noise (random edge removal). We also show that struc2vec is
superior in a classi�cation task where node labels depends more on
structural identity (i.e., air-tra�c networks with labels representing
airport activity).

�e remainder of this paper is organized as follows. Section 2
brie�y overviews the recent related work on learning latent repre-
sentations of nodes in networks. Section 3 presents the struc2vec
framework in detail. Experimental evaluation and comparison to
other methods are shown in Section 4. Finally, Section 5 concludes
the paper with a brief discussion.

2 RELATED WORK
Embedding network nodes in (Euclidean) space has received much
a�ention over the past decades from di�erent communities. �e
technique is instrumental for Machine Learning applications that
leverage network data, as node embeddings can be directly used in
tasks such as classi�cation and clustering.

In Natural Language Processing [2], generating dense embed-
dings for sparse data has a long history. Recently, Skip-Gram [12,
13] was proposed as an e�cient technique to learn embeddings
for text data (e.g., sentences). Among other properties, the learned
language model places semantically similar words near each other
in space.

Learning a language model from a network was �rst proposed
by DeepWalk [16]. It uses random walks to generate sequences
of nodes from the network, which are then treated as sentences
by Skip-Gram. Intuitively, nodes close in the network will tend to
have similar contexts (sequences) and thus have embeddings that
are near one another. �is idea was later extended by node2vec [6].
By proposing a biased second order random walk model, node2vec
provides more �exibility when generating the context of a vertex.
In particular, the edge weights driving the biased random walks
can be designed in an a�empt to capture both vertex homophily
and structural equivalence. However, a fundamental limitation is
that structurally similar nodes will never share the same context if
their distance (hop count) is larger than the Skip-Gram window.

subgraph2vec [14] is another recent approach for learning em-
beddings for rooted subgraphs, and unlike the previous techniques
it does not use random walks to generate context. Alternatively, the
context of a node is simply de�ned by its neighbors. Additionally,
subgraph2vec captures structural equivalence by embedding nodes
with the same local structure to the same point in space. Nonethe-
less, the notion of structural equivalence is very rigid since it is
de�ned as a binary property dictated by the Weisfeiler-Lehman
isomorphism test [21]. �us, two nodes that are structurally very
similar (but fail the test) and have non-overlapping neighbors may
not be close in space.

Similarly to subgraph2vec, considerable e�ort has recently been
made on learning richer representations for network nodes [4, 24].
However, building representations that explicitly capture structural
identity is a relative orthogonal problem that has not received much
a�ention. �is is the focus of struc2vec.

A recent approach to explicitly identify the role of nodes using
just the network structure is RolX [7]. �is unsupervised approach
is based on enumerating various structural features for nodes, �nd-
ing the more suited basis vector for this joint feature space, and
then assigning for every node a distribution over the identi�ed roles
(basis), allowing for mixed membership across the roles. Without
explicitly considering node similarity or node context (in terms of

structure), RolX is likely to miss node pairs that are structurally
equivalent (to be shown).

3 STRUC2VEC
Consider the problem of learning representations that capture the
structural identity of nodes in the network. A successful approach
should exhibit two desired properties:

• �e distance between the latent representation of nodes
should be strongly correlated to their structural similarity.
�us, two nodes that have identical local network struc-
tures should have the same latent representation, while
nodes with di�erent structural identities should be far
apart.

• �e latent representation should not depend on any node or
edge a�ribute, including the node labels. �us, structurally
similar nodes should have close latent representation, inde-
pendent of node and edge a�ributes in their neighborhood.
�e structural identity of nodes must be independent of its
“position” in the network.

Given these two properties, we propose struct2vec, a general frame-
work for learning latent representations for nodes composed of
four main steps, as follows:

(1) Determine the structural similarity between each vertex
pair in the graph for di�erent neighborhood sizes. �is
induces a hierarchy in the measure for structural similar-
ity between nodes, providing more information to assess
structural similarity at each level of the hierarchy.

(2) Construct a weighted multilayer graph where all nodes
in the network are present in every layer, and each layer
corresponds to a level of the hierarchy in measuring struc-
tural similarity. Moreover, edge weights among every node
pair within each layer are inversely proportional to their
structural similarity.

(3) Use the multilayer graph to generate context for each node.
In particular, a biased random walk on the multilayer graph
is used to generate node sequences. �ese sequences are
likely to include nodes that are more structurally similar.

(4) Apply a technique to learn latent representation from a
context given by the sequence of nodes, for example, Skip-
Gram.

Note that struct2vec is quite �exible as it does not mandates any
particular structural similarity measure or representational learning
framework. In what follows, we explain in detail each step of
struct2vec and provide a rigorous approach to a hierarchical measure
of structural similarity.

3.1 Measuring structural similarity
�e �rst step of struct2vec is to determine a structural similarity
between two nodes without using any node or edge a�ributes.
Moreover, this similarity metric should be hierarchical and cope
with increasing neighborhood sizes, capturing more re�ned notions
of structural similarity. Intuitively, two nodes that have the same
degree are structurally similar, but if their neighbors also have the
same degree, then they are even more structurally similar.

LetG = (V ,E) denote the undirected, unweighted network under
consideration with vertex set V and edge set E, where n = |V |

denotes the number of nodes in the network and k∗ its diameter.
Let Rk (u) denote the set of nodes at distance (hop count) exactly
k ≥ 0 from u in G. Note that R1(u) denotes the set of neighbors of
u and in general, Rk (u) denotes the ring of nodes at distance k . Let
s(S) denote the ordered degree sequence of a set S ⊂ V of nodes.

By comparing the ordered degree sequences of the rings at dis-
tance k from both u and v we can impose a hierarchy to measure
structural similarity. In particular, let fk (u,v) denote the structural
distance between u and v when considering their k-hop neighbor-
hoods (all nodes at distance less than or equal to k and all edges
among them). In particular, we de�ne:

fk (u,v) = fk−1(u,v) + д(s(Rk (u)), s(Rk (v))),
k ≥ 0 and |Rk (u)|, |Rk (v)| > 0 (1)

where д(D1,D2) ≥ 0 measures the distance between the ordered
degree sequences D1 and D2 and f−1 = 0. Note that by de�nition
fk (u,v) is non-decreasing in k and is de�ned only when both u or
v have nodes at distance k . Moreover, using the ring at distance
k in the de�nition of fk (u,v) forces the comparison between the
degree sequences of nodes that are at the same distance from u
and v . Finally, note that if the k-hop neighborhoods of u and v are
isomorphic, and maps u onto v , then fk−1(u,v) = 0.

A �nal step is determining the function that compares two degree
sequences. Note that s(Rk (u)) and s(Rk (v)) can be of di�erent sizes
and its elements are arbitrary integers in the range [0,n − 1] with
possible repetitions. We adopt Dynamic Time Warping (DTW) to
measure the distance between two ordered degree sequences, a
technique that can cope be�er with sequences of di�erent sizes and
loosely compares sequence pa�erns [18, 20].

Informally, DTW �nds the optimal alignment between two se-
quences A and B. Given a distance function d(a,b) for the elements
of the sequence, DTW matches each element a ∈ A to b ∈ B, such
that the sum of the distances between matched elements is mini-
mized. Since elements of sequence A and B are degrees of nodes,
we adopt the following distance function:

d(a,b) = max(a,b)
min(a,b) − 1 (2)

Note that when a = b then d(a,b) = 0. �us, two identical ordered
degree sequences will have zero distance. Also note that by taking
the ratio between the maximum and the minimum, the degrees
1 and 2 are much more di�erent than degrees 101 and 102, a de-
sired property when measuring the distance between node degrees.
Finally, while we use DTW to assess the similarity between two
ordered degree sequences, any other cost function could be adopted
by our framework.

3.2 Constructing the context graph
We construct a multilayer weighted graph that encodes the struc-
tural similarity between nodes. Recall that G = (V ,E) denotes the
original network (possibly not connected) and k∗ its diameter. Let
M denote the multilayer graph where layer k is de�ned using the
k-hop neighborhoods of the nodes.

Each layer k = 0, . . . ,k∗ is formed by a weighted undirected
complete graph with node set V , and thus,

(n
2
)

edges. �e edge
weight between two nodes in a layer is given by:

wk (u,v) = e−fk (u,v), k = 0, . . . ,k∗ (3)

Note that edges are de�ned only if fk (u,v) is de�ned and that
weights are inversely proportional to structural distance, and as-
sume values smaller than or equal to 1, being equal to 1 only if
fk (u,v) = 0. Note that nodes that are structurally similar to u will
have larger weights across various layers of M .

We connect the layers using directed edges as follows. Each
vertex is connected to its corresponding vertex in the layer above
and below (layer permi�ing). �us, every vertex u ∈ V in layer k is
connected to the corresponding vertex u in layer k + 1 and k − 1.
�e edge weight between layers are as follows:

w(uk ,uk+1) = log(Γk (u) + e), k = 0, . . . ,k∗ − 1
w(uk ,uk−1) = 1, k = 1, . . . ,k∗

(4)

where Γk (u) is number of edges incident to u that have weight
larger than the average edge weight of the complete graph in layer
k . In particular:

Γk (u) =
∑
v ∈V

1(wk (u,v) > wk) (5)

where wk =
∑
(u,v)∈(V2)wk (u,v)/

(n
2
)
. �us, Γk (u) measures the

similarity of node u to other nodes in layer k . Note that if u has
many similar nodes in the current layer, then it should change
layers to obtain a more re�ned context. Note that by moving up
one layer the number of similar nodes can only decrease. Last, the
log function simply reduces the magnitude of the potentially large
number of nodes that are similar to u in a given layer.

Finally, note that M has nk∗ vertices and at most k∗
(n
2
)
+ 2n(k∗ −

1) weighted edges. In Section 3.5 we discuss how to reduce the
complexity of generating and storing M .

3.3 Generating context for nodes
�e multilayer graph M is used to generate structural context for
each node u ∈ V . Note that M captures the structure of structural
similarities between nodes in G using absolutely no label infor-
mation. As in previous works, struct2vec uses random walks to
generate sequence of nodes to determine the context of a given
node. In particular, we consider a biased random walk that moves
around M making random choices according to the weights of M .
Before each step, the random walk �rst decides if it will change
layers or walk on the current layer (with probability q > 0 the
random walk stays in the current layer).

Given that it will stay in the current layer, the probability of
stepping from node u to node v in layer k is given by:

pk (u,v) =
e−fk (u,v)

Zk (u)
(6)

where Zk (u) is the normalization factor for vertex u in layer k ,
simply given by:

Zk (u) =
∑
v ∈V
v,u

e−fk (u,v) (7)

Note that the random walk will prefer to step onto nodes that are
structurally more similar to the current vertex, avoiding nodes that
have very li�le structural similarity with it. �us, the context of a
nodeu ∈ V is likely to have structurally similar nodes, independent
of their labels and position in the original network G.

With probability 1−q, the random walk decides to change layers,
and moves to the corresponding node either in layer k + 1 or layer
k − 1 (layer permi�ing) with probability proportional to the edge
weights. In particular:

pk (uk ,uk+1) =
w(uk ,uk+1)

w(uk ,uk+1) +w(uk ,uk−1)
pk (uk ,uk−1) = 1 − pk (uk ,uk+1)

(8)

Note that every time the walker steps within a layer it includes the
current vertex as part of its context, independent of the layer. �us,
a vertex u may have a given context in layer k (determined by the
structural similarity of this layer), but have a subset of this context
at layer k + 1, as the structural similarity cannot increase as we
move to higher layers. �is notion of a hierarchical context across
the layers is a fundamental aspect of the proposed methodology.

Finally, for each node u ∈ V , we start a random walk in its
corresponding vertex in layer 0. Random walks have a �xed and
relatively short length (number of steps), and the process is repeated
a certain number of times, giving rise to multiple independent walks
(i.e., the multiple contexts of node u).

3.4 Learning a language model
Recent language modeling techniques have been extensively used
to learn word embeddings, and only require sets of sentences in
order to generate meaningful representations. Informally, the task
can be de�ned as learning word probabilities given a context. In
particular, Skip-Gram [12] has proven to be e�ective at learning
meaningful representations for a variety of data. In order to apply it
to networks, it su�ces to use arti�cially generated node sequences
instead of word sentences. In our framework, these sequences
are generated by biased random walks on the multilayer graph M .
Given a node, Skip-Gram aims to maximize the likelihood of its
context in a sequence, where a node’s context is given by a window
of size w centered on it.

For this work we use Hierarchical So�max, where conditional
symbol probabilities are calculated using a tree of binary classi-
�ers. For each node vj ∈ V , Hierarchical So�max assigns a spe-
ci�c path in the classi�cation tree, de�ned by a set of tree nodes
n(vj , 1),n(vj , 2), . . . ,n(vj ,h), where n(vj ,h) = vj . In this se�ing,
we have:

P(vj |vi) =
h∏

k=1
C(n(vj ,k),vi) (9)

whereC is a binary classi�er present in every node in the tree. Note
that since Hierarchical So�max operates on a binary tree, we have
that h = O(log |V |).

We train Skip-Gram according to its optimization problem given
by equation (9). Note that while we use Skip-Gram to learn node
embeddings, any other technique to learn latent representations
for text data could be used in our framework.

3.5 Complexity and optimizations
In order to construct M , the structural distance between every
node pair for every layer must be computed, namely, fk (u,v) for
u,v ∈ V , and 0 ≤ k ≤ k∗. However, fk (u,v) uses the result of
a DTW calculation between two degree sequences. While classic
implementation of DTW has complexityO(`2), fast techniques have

complexity O(`), where ` is the size of the largest sequence [20].
Let dmax denote the largest degree in the network. �en, the size of
the degree sequence |s(Rk (u))| ≤ min(dkmax,n), for any node u and
layer k . Since in each layer there are

(n
2
)

pairs, the complexity of
computing all distances for layer k is O(n2 min(dkmax,n)). �e �nal
complexity is then O(k∗n3). In what follows we describe a series of
optimizations that will signi�cantly reduce the computation and
memory requirements of the framework.

Reducing the length of degree sequences (OPT1). Although de-
gree sequences at layer k have lengths bounded by min(dkmax,n),
for some networks this can be quite large even for small k (e.g.,
for k = 3 the sequences are already O(n)). To reduce the cost of
comparing large sequences, we propose compressing the ordered
degree sequence as follows. For each degree in the sequence, we
count the number of occurrences of that degree. �e compressed
ordered degree sequence is a tuple with the degree and the number
of occurrences. Since many nodes in a network tend to have the
same degree, in practice the compressed ordered degree sequence
can be an order of magnitude smaller than the original.

Let A′ and B′ denote the compressed degree sequences of A and
B, respectively. Since the elements ofA′ and B′ are tuples, we adapt
the DTW pairwise distance function as follows:

dist(a,b) =
(

max(a0,b0)
min(a0,b0)

− 1
)

max(a1,b1) (10)

where a = (a0,a1) and b = (b0,b1) are tuples in A′ and B′, re-
spectively; a0 and b0 are the degrees; a1 and b1 are the number of
occurrences. Note that using the compressed degree sequence leads
to comparisons between pieces of the original sequences that have
the same degree (as opposed to comparing every degree). �us,
equation (10) leads to an approximation of the DTW on the orig-
inal degree sequences, as given by equation (2). However, DTW
now operates on A′ and B′, which are much shorter than A and B,
respectively.

Reducing the number of pairwise similarity calculations (OPT2).
While the original framework assesses the similarity between every
node pair at every layer k , clearly this seems unnecessary. Consider
two nodes with very di�erent degrees (eg., 2 and 20). �eir struc-
tural distance even for k = 0 will be large, and consequently the
edge between them in M will have a very small weight. �us, when
generating context for these nodes, the random walk is unlikely to
traverse this edge. Consequently, not having this edge in M will
not signi�cantly change the model.

We limit the number of pairwise similarity calculations toΘ(logn)
per node, for every level k . Let Ju denote the set of nodes that will
be neighbors of u in M , which will be the same for every level. Ju
should have the nodes most structurally similar to u. In order to
determine Ju , we take the nodes that have degrees most similar to
u. �is can be computed e�ciently by performing a binary search
on the ordered degree sequence of all nodes in the network (for the
degree of nodeu), and taking logn consecutive nodes on each direc-
tion a�er the search completes. �us, computing Ju has complexity
Θ(logn). Computing Ju for all nodes has complexity Θ(n logn)
which is also needed for sorting the degrees of the network. As for
memory requirements, each layer of M will now have Θ(n logn)
edges as opposed to Θ(n2).

Reducing the number of layers (OPT3). �e number of layers in
M is given by the diameter of the network, k∗. However, for many
networks the diameter can be much larger than the average distance.
Moreover, the importance of assessing the structural similarity
between two nodes diminishes with arbitrarily large values for k .
In particular, when k is near k∗ the length of the degree sequences
of the rings become relatively short, and thus fk (u,v) is not much
di�erent from fk−1(u,v). �erefore, we cap the number the layers
in M to a �xed constant k ′ < k∗, capturing the most important
layers for assessing structural similarity. �is signi�cantly reduces
the computational and memory requirements for constructing M .

Although the combination of the above optimizations a�ects the
capacity of the framework in generating good representations for
nodes that are structurally similar, we will show that their impact
is marginal and sometimes even bene�cial. �us, the bene�ts in re-
ducing computational and memory requirements of the framework
greatly outweighs its drawbacks. Last, we make struc2vec available
at: h�ps://github.com/leoribeiro/struc2vec

4 EXPERIMENTAL EVALUATION
In what follows we evaluate struct2vec in di�erent scenarios in
order to illustrate its potential in capturing the structural identity
of nodes, also in light of state-of-the-art techniques for learning
node representations.

4.1 Barbell graph
We denote B(h,k) as the (h,k)-barbell graph which consists of two
complete graphs K1 and K2 (each having h nodes) connected by a
path graph P of length k . Two nodes b1 ∈ V (K1) and b2 ∈ V (K2)
act as the bridges. Using {p1, . . . ,pk } to denote V (P), we connect
b1 to p1 and b2 to pk , thus connecting the three graphs.

�e barbell graph has a signi�cant number of nodes with the
same structural identity. Let C1 = V (K1) \ {b1} and C2 = V (K2) \
{b2}. Note that all nodes v ∈ {C1 ∪C2} are structurally equivalent,
in the strong sense that there exists an automorphism between
any pair of such nodes. Additionally, we also have that all node
pairs {pi ,pk−i }, for 1 ≤ i ≤ k − 1, along with the pair {b1,b2},
are structurally equivalent in the same strong sense. Figure 2a
illustrates a B(10, 10) graph, where structurally equivalent nodes
have the same color.

�us, we expect struct2vec to learn vertex representations that
capture the structural equivalence mentioned above. Every node
pair that is structurally equivalent should have similar latent rep-
resentation. Moreover, the learned representations should also
capture structural hierarchies: while the node p1 is not equivalent
to neither nodes p2 or b1, we can clearly see that from a structural
point of view it is more similar to p2 (it su�ces to compare their
degrees).

Figure 2 shows the latent representations learned by DeepWalk,
node2vec and struct2vec for B(10, 10). DeepWalk fails to capture
structural equivalences, which is expected since it was not designed
to consider structural identities. As illustrated, node2vec does not
capture structural identities even with di�erent variations of its
parameters p and q. In fact, it learns mostly graph distances, placing
closer in the latent space nodes that are closer (in hops) in the graph.
Another limitation of node2vec is that Skip-Gram’s window size

https://github.com/leoribeiro/struc2vec

Figure 2: (a) Barbell graph B(10, 10). (b) Roles identi�ed by RolX. Latent representations in R2 learned by (c) DeepWalk,
(d) node2vec and (e,f,g,h) struc2vec. Parameters used for all methods: number of walks per node: 20, walk length: 80, skip-
gram window size: 5. For node2vec: p = 1 and q = 2.

makes it impossible for nodes in K1 and K2 to appear in the same
context.

struct2vec, on the other hand, learns representations that prop-
erly separate the equivalent classes, placing structurally equivalent
nodes near one another in the latent space. Note that nodes of the
same color are tightly grouped together. Moreover, p1 and p10 are
placed close to representations for nodes in K1 and K2, as they are
the bridges. Finally, note that none of the three optimizations have
any signi�cant e�ect on the quality of the representations. In fact,
structurally equivalent nodes are even closer to one another in the
latent representations under OPT1.

Last, we apply RolX to the barbell graph (results in Figure 2(b)).
A total of six roles were identi�ed and some roles indeed precisely
captured structural equivalence (roles 1 and 3). However, struc-
turally equivalent nodes (in K1 and K2) were placed in three dif-
ferent roles (role 0, 2, and 5) while role 4 contains all remaining
nodes in the path. �us, although RolX does capture some notion

of structural equivalence when assigning roles to nodes, struct2vec
be�er identi�es and separates structural equivalence.

4.2 Karate network
�e Zachary’s Karate Club [25] is a network composed of 34 nodes
and 78 edges, where each node represents a club member and
edges denote if two members have interacted outside the club. In
this network, edges are commonly interpreted as indications of
friendship between members.

We construct a network composed of two copies G1 and G2 of
the Karate Club network, where each node v ∈ V (G1) has a mirror
node u ∈ V (G2). We also connect the two networks by adding
an edge between mirrored node pairs 1 and 37. Although this is
not necessary for our framework, DeepWalk and node2vec cannot
place in the same context nodes in di�erent connected components
of the graph. �us, we add the edge for a more fair comparison

Figure 3: Node representations for the mirrored Karate net-
work created by (a) DeepWalk, (b) node2vec and (c) struc2vec.
Parameters used for all methods: number of walks per node:
5, walk length: 15, Skip-Gram window size: 3. For node2vec:
p = 1 and q = 2.

Figure 4: (a) Mirrored Karate network. Identical colors cor-
respond to mirrored nodes. (b) Roles identi�ed by RolX

with the two baselines. Figure 4a shows mirrored network with
corresponding pairs having the same color.

Figure 3 shows the representations learned byDeepWalk, node2vec
and struct2vec. Clearly, Deepwalk and node2vec fail to group in
the latent space structurally equivalent nodes, including mirrored
nodes.

Once again, struct2vec manages to learn features that properly
capture the structural identity of nodes. Mirrored pairs – that
is, nodes with the same color – stay close together in the latent
space, and there is a complex structural hierarchy in the way the
representations are grouped together.

As an example, note that nodes 1, 34 and their correspondent
mirrors (37 and 42) are in a separate cluster in the latent space.
Interestingly, these are exactly the nodes that represent the club
instructor Mr. Hi and his administrator John A. �e network was
gathered a�er a con�ict between the two split the members of
the club into two groups – centered on either Mr. Hi or John A.
�erefore, nodes 1 and 34 have the speci�c and similar role of
leaders in the network. Note that struct2vec captures their function
even though there is no edge between them.

Another visible cluster in the latent space is composed of nodes
2, 3, 4 and 33, also along with their mirrors. �ese nodes also have
a speci�c structural identity in the network: all of them have high

degrees and are also connected to at least one of the leaders. Lastly,
nodes 26 and 25 (far right in the latent space) have extremely close
representations, which agrees with their structural role: both have
low degree and are 2 hops away from leader 34.

struct2vec also captures non-trivial structural equivalences. Note
that nodes 7 and 50 (pink and yellow) are mapped to close points
in the latent space. Surprisingly, these two nodes are structurally
equivalent – there exists an automorphism in the graph that maps
one into the other. �is can be more easily seen once we note that
nodes 6 and 7 are also structurally equivalent, and 50 is the mirrored
version of node 6 (therefore also structurally equivalent).

Last, Figure 4b shows the roles identi�ed by RolX in the mirrored
Karate network (28 roles were identi�ed). Note that leaders 1 and
34 were placed in di�erent roles. �e mirror for 1 (node 37) was
also placed in a di�erent role, while the mirror for 34 (node 42) was
placed in the same role as 34. A total of 7 corresponding pairs (out
of 34) were placed in the same role. However, some other structural
similarities were also identi�ed – e.g., nodes 6 and 7 are structurally
equivalent and were assigned the same role. Again, RolX seems
to capture some notion of structural similarities among network
nodes but struct2vec can be�er identify and separate structural
equivalences using latent representations.

Consider the distance between the latent representation for
nodes. We measure the distance distribution between pairs cor-
responding to mirrored nodes and among all node pairs (using
the representation shown in Figure 3). Figure 5 shows the two
distance distributions for the representations learned by node2vec
and struc2vec. For node2vec the two distributions are practically
identical, indicating that distances between mirrored pairs blend
well with all pairs. In contrast, struc2vec exhibits two very di�erent
distributions: 94% of mirrored node pairs have distance smaller
than 0.25 while 68% of all node pairs have distance larger than 0.25.
Moreover, the average distance between all node pairs is 5.6 times
larger than that of mirrored pairs, while this ratio is about slightly
smaller than 1 for node2vec.

To be�er characterize the relationship between structural dis-
tance and distances in the latent representation learned by struc2vec,
we compute the correlation between the two distances for all node
pairs. In particular, for each layer k we compute the Spearman
and Pearson correlation coe�cients between fk (u,v), as given by
equation (1), and the euclidean distance between u and v in the
learned representation. Results shown in Table 1 for the mirrored
Karate network indeed corroborate that there is a very strong cor-
relation between the two distances, for every layer, captured by
both coe�cients. �is suggests that struc2vec indeed captures in
the latent space the measure for structural similarity adopted by
the methodology.

4.3 Robustness to edge removal
We illustrate the potential of the framework in e�ectively repre-
senting structural identity in the presence of noise. In particular,
we randomly remove edges from the network, directly changing
its structure. We adopt the parsimonious edge sampling model to
instantiate two structurally correlated networks [15].

�e model works by taking a �xed graph G = (V ,E) and gener-
ating a graph G1 by sampling each edge e ∈ E with probability s ,

Figure 5: Distance distributions between node pairs (mir-
rored pairs and all pairs) in the latent space, for the mirrored
Karate network learned bynode2vec and struc2vec (as shown
in Figure 3). Curves marked with × correspond to distances
between mirrored pairs while + corresponds to all pairs; cor-
responding averages indicated by vertical lines.

Table 1: Pearson and Spearman correlation coe�cients be-
tween structural distance and euclidean distance in latent
space for all node pairs in the mirrored Karate network.

Layer Pearson (p-value) Spearman (p-value)
0 0.83 (0.0) 0.74 (0.0)
2 0.71 (0.0) 0.65 (0.0)
4 0.70 (0.0) 0.57 (0.0)
6 0.74 (0.0) 0.57 (2.37)

independently. �us, each edge of G is present in G1 with probabil-
ity s . Repeat the process again using G to generate another graph
G2. �us, G1 and G2 are structurally correlated through G, and s
controls the amount of structural correlation. Note that when s = 1,
G1 and G2 are isomorphic, while when s = 0 all structural identity
is lost.

We apply the edge sampling model to an egonet extracted from
Facebook (224 nodes, 3192 edges, max degree 99, min degree 1) [10]
to generate G1 and G2 with di�erent values for s . We relabel the
nodes inG2 (to avoid identical labels) and consider the union of the
two graphs as the input network to our framework. Note that this
graph has at least two connected components (corresponding toG1
and G2) and every node (in G1) has a corresponding pair (in G2).

Figure 6 shows the distance (latent space with 2 dimensions) dis-
tribution between corresponding node pairs and all node pairs for
various values for s (corresponding averages are shown in Table 2).
For s = 1, the two distance distributions are strikingly di�erent,
with the average distance for all pairs being 21 times larger than
that for corresponding pairs. More interestingly, when s = 0.9 the
two distributions are still very di�erent. Note that while further

Figure 6: Distance distribution between node pairs in la-
tent space representation (2 dimensions) under the edge
sampling model (di�erent values for s). Bottom curves
(marked with ×) are for corresponding node pairs; top
curves (marked with +) are for all node pairs.

decreasing s does not signi�cantly a�ect the distance distribution
of all pairs, it slowly increases the distribution of corresponding
pairs. However, even when s = 0.3 (which means that the proba-
bility that an original edge appears both in G1 and G2 is 0.09, s2),
the framework still places corresponding nodes closer in the latent
space.

�is experiment indicates the robustness of the framework in
uncovering the structural identity of nodes even in the presence of
structural noise, modeled here through edge removals.

Table 2: Average and standard deviation for distances be-
tween node pairs in the latent space representation (see cor-
responding distributions in Figure 6).

s Corresponding - avg (std) All nodes - avg (std)
1.0 0.083 (0.05) 1.780 (1.354)
0.9 0.117 (0.142) 1.769 (1.395)
0.3 0.674 (0.662) 1.962 (1.445)

4.4 Classi�cation
A common application of latent representations for network nodes
is classi�cation. struc2vec can be leveraged for this task when labels
for nodes are more related to their structural identity than to the
labels of their neighbors. To illustrate this potential, we consider
air-tra�c networks: unweighted, undirected networks where nodes
correspond to airports and edges indicate the existence of commer-
cial �ights. Airports will be assigned a label corresponding to their
level of activity, measured in �ights or people (discussed below).
We consider the following datasets (collected for this study):

Figure 7: Average accuracy for multi-class node classi�ca-
tion in air-tra�c networks of Brazil, USA and Europe for
di�erent node features used in supervised learning.

• Brazilian air-tra�c network: Data collected from the Na-
tional Civil Aviation Agency (ANAC)1 from January to
December 2016. �e network has 131 nodes, 1,038 edges
(diameter is 5). Airport activity is measured by the total
number of landings plus takeo�s in the corresponding year.

• American air-tra�c network: Data collected from the Bu-
reau of Transportation Statistics2 from January to October,
2016. �e network has 1,190 nodes, 13,599 edges (diameter
is 8). Airport activity is measured by the total number of
people that passed (arrived plus departed) the airport in
the corresponding period.

• European air-tra�c network: Data collected from the Statis-
tical O�ce of the European Union (Eurostat)3 from January
to November 2016. �e network has 399 nodes, 5,995 edges
(diameter is 5). Airport activity is measured by the to-
tal number of landings plus takeo�s in the corresponding
period.

For each airport, we assign one of four possible labels corresponding
to their activity. In particular, for each dataset, we use the quartiles
obtained from the empirical activity distribution to split the dataset
in four groups, assigning a di�erent label for each group. �us, label
1 is given to the 25% less active airports, and so on. Note that all
classes (labels) have the same size (number of airports). Moreover,
classes are related more to the role played by the airport.

We learn latent representations for nodes of each air-tra�c net-
work using struc2vec and node2vec using a grid search to select the
best hyperparameters for each case. Note that this step does not use
any node label information. �e latent representation for each node
becomes the feature that is then used to train a supervised classi�er
(one-vs-rest logistic regression with L2 regularization). We also
consider just the node degree as a feature since it captures a very
basic notion of structural identity. Last, since classes have identical
1h�p://www.anac.gov.br/
2h�ps://transtats.bts.gov/
3h�p://ec.europa.eu/

sizes, we use just the accuracy to assess performance. Experiments
are repeated 10 times using random samples to train the classi�er
(80% of the nodes used for training) and we report on the average
performance.

Figure 7 shows the classi�cation performance of the di�erent
features for all air-tra�c networks. Clearly, struc2vec outperforms
the other approaches, and its optimizations have li�le in�uence. For
the Brazilian network, struc2vec improves classi�cation accuracy
by 50% in comparison to node2vec. Interestingly, for this network
node2vec has average performance (slightly) inferior to node degree,
indicating the importance played by the structural identity of the
nodes in classi�cation.

4.5 Scalability
In order to illustrate its scalability, we apply struc2vec with the �rst
two optimizations to instances of the Erdös-Rényi random graph
model (using 128 dimensions, 10 walks per node, walk length 80,
Skip-Gram window 10). We compute the average execution time
for 10 independent runs on graphs with sizes from 100 to 1,000,000
nodes and average degree of 10. In order to speed up training the
language model, we use Skip-Gram with Negative Sampling [13].
Figure 8 shows the execution time (in log-log scale) indicating
that struc2vec scales super-linearly but closer to linear than to n1.5

(dashed lines). �us, despite its unfavorable worst case time and
space complexity, in practice struc2vec can be applied to very large
networks.

Figure 8: Average execution time of struc2vec on Erdös-
Rényi graphs with average degree of 10. Training time refers
to the additional time required by Skip-Gram.

5 CONCLUSION
Structural identity is a concept of symmetry in networks in which
nodes are identi�ed based on the network structure. �e concept
is strongly related to functions or roles played by nodes in the
network, an important problem in social and hard sciences.

We propose struc2vec, a novel and �exible framework to learn
representations that capture the structural identity of nodes in a

network. struc2vec assesses the structural similarity of node pairs
by considering a hierarchical metric de�ned by the ordered degree
sequence of nodes and uses a weighted multilayer graph to generate
context.

We have shown that struc2vec excels in capturing the structural
identity of nodes, in comparison to state-of-the-art techniques such
as DeepWalk, node2vec and RolX. It overcomes their limitation by
focusing explicitly on structural identity. Not surprising, we also
show that struc2vec is superior in classi�cation tasks where node
labels are more dependent on their role or structural identity. Last,
di�erent models to generate representations tend to capture dif-
ferent properties, and we argue that structural identity is clearly
important when considering possible node representations.

REFERENCES
[1] Nir Atias and Roded Sharan. 2012. Comparative analysis of protein networks:

hard problems, practical solutions. Commun. ACM 55 (2012).
[2] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A

Neural Probabilistic Language Model. JMLR (2003).
[3] V Blondel, A Gajardo, M Heymans, P Senellart, and P Van Dooren. 2004. A mea-

sure of similarity between graph vertices: Applications to synonym extraction
and web searching. SIAM review (2004).

[4] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep Neural Networks for
Learning Graph Representations. In AAAI.

[5] F Fouss, A Piro�e, J Renders, and M Saerens. 2007. Random-Walk Computation
of Similarities Between Nodes of a Graph with Application to Collaborative
Recommendation. IEEE Trans. on Knowl. and Data Eng. (2007).

[6] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In ACM SIGKDD.

[7] K Henderson, B Gallagher, T Eliassi-Rad, H Tong, S Basu, L Akoglu, D Koutra,
C Faloutsos, and L Li. 2012. Rolx: structural role extraction & mining in large
graphs. In ACM SIGKDD.

[8] Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM) (1999).

[9] Elizabeth A Leicht, Pe�er Holme, and Mark EJ Newman. 2006. Vertex similarity
in networks. Physical Review E 73 (2006).

[10] Jure Leskovec and Julian J Mcauley. 2012. Learning to discover social circles in
ego networks. In NIPS.

[11] Francois Lorrain and Harrison C White. 1971. Structural equivalence of individ-
uals in social networks. �e Journal of mathematical sociology 1 (1971).

[12] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. 2013. E�cient
Estimation of Word Representations in Vector Space. In ICLR Workshop.

[13] T Mikolov, I Sutskever, K Chen, G Corrado, and J Dean. 2013. Distributed
Representations of Words and Phrases and their Compositionality. In NIPS.

[14] A Narayanan, M Chandramohan, L Chen, Y Liu, and S Saminathan. 2016. sub-
graph2vec: Learning Distributed Representations of Rooted Sub-graphs from
Large Graphs. In Workshop on Mining and Learning with Graphs.

[15] Pedram Pedarsani and Ma�hias Grossglauser. 2011. On the privacy of
anonymized networks. In ACM SIGKDD.

[16] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online
Learning of Social Representations. In ACM SIGKDD.

[17] Narciso Pizarro. 2007. Structural Identity and Equivalence of Individuals in Social
Networks Beyond Duality. International Sociology 22 (2007).

[18] T Rakthanmanon, B Campana, A Mueen, G Batista, B Westover, Q Zhu, J Zakaria,
and E Keogh. 2013. Addressing big data time series: Mining trillions of time
series subsequences under dynamic time warping. ACM TKDD (2013).

[19] Lee Douglas Sailer. 1978. Structural equivalence: Meaning and de�nition, com-
putation and application. Social Networks (1978).

[20] S Salvador and P Chan. 2004. FastDTW: Toward accurate dynamic time warping
in linear time and space. In Workshop on Min. Temp. and Seq. Data, ACM SIGKDD.

[21] N Shervashidze, P Schweitzer, E van Leeuwen, K Mehlhorn, and K Borgwardt.
2011. Weisfeiler-Lehman Graph Kernels. JMLR (2011).

[22] R Singh, J Xu, and B Berger. 2008. Global alignment of multiple protein interaction
networks with application to functional orthology detection. PNAS (2008).

[23] Jian Tang, Meng �, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. In WWW.

[24] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network
Embedding. In ACM SIGKDD.

[25] Wayne W Zachary. 1977. An information �ow model for con�ict and �ssion in
small groups. Journal of anthropological research (1977).

[26] Laura A Zager and George C Verghese. 2008. Graph similarity scoring and
matching. Applied mathematics le�ers (2008).

	Abstract
	1 Introduction
	2 Related work
	3 struc2vec
	3.1 Measuring structural similarity
	3.2 Constructing the context graph
	3.3 Generating context for nodes
	3.4 Learning a language model
	3.5 Complexity and optimizations

	4 Experimental Evaluation
	4.1 Barbell graph
	4.2 Karate network
	4.3 Robustness to edge removal
	4.4 Classification
	4.5 Scalability

	5 Conclusion
	References

