struc2vec: Learning Node Representations from Structural Identity

Leonardo Ribeiro, Pedro Saverese, Daniel Figueiredo

Systems Engineering and Computer Science Federal University of Rio de Janeiro – Brazil

ACM SIGKDD 2017

Node Representations

Map network nodes into Euclidean space
 o aka. network embedding

Structural Identity

- Nodes in networks have specific roles
 - eg., individuals, web pages, proteins, etc
- Structural identity
 - identification of nodes based on network structure (no other attribute)
 - **o** often related to role played by node
 - Automorphism: strong structural equivalence

Red, Green: automorphism
 Purple, Brown: structurally similar

Related Work

- word2vec: framework to embed words (from sentences) into Euclidean space [arXiv'13]
- deepwalk: embed network nodes generating sentences through random walks [KDD'14]
- In node2vec: use biased random walks to generate sentences [KDD'16]

Walk on original network to generate context

I *rolx*: use node-feature matrix to compute low rank matrix for roles [KDD'12]

struc2vec

Novel framework for node representations based on structural identity

• structurally similar nodes close in space

Key ideas

- Structural similarity does not depend on hop distance
 - neighbor nodes can be different, far away nodes can be similar
- Structural identity as a hierarchical concept
 - **O** depth of similarity varies
- □ Flexible four step procedure
 - **O** operational aspect of steps are flexible

Step 1: Structural Similarity

- Hierarchical measure for structural similarity between two nodes
- R_k(u): set of nodes at distance *k* from *u* (ring)
- \Box s(S): ordered degree sequence of set S

Step 1: Structural Similarity

g(D₁,D₂): distance between two ordered sequences
 o cost of pairwise alignment: max(a,b) / min(a,b) -1
 o optimal alignment by DTW in our framework

$$\begin{split} s(\mathsf{R}_{0}(\mathsf{u})) &= 4 & s(\mathsf{R}_{1}(\mathsf{u})) = 1,3,4,4 & s(\mathsf{R}_{2}(\mathsf{u})) = 2,2,2,2 \\ s(\mathsf{R}_{0}(\mathsf{v})) &= 3 & s(\mathsf{R}_{1}(\mathsf{v})) = 4,4,4 & s(\mathsf{R}_{2}(\mathsf{v})) = 1,2,2,2,2 \\ g(.\,,\,.) &= 0.33 & g(.\,,\,.) = 3.33 & g(.\,,\,.) = 1 \end{split}$$

f_k(u,v): structural distance between nodes u and v considering first k rings
 f_k(u,v) = f_{k-1}(u,v) + g(s(R_k(u)), s(R_k(v)))

 $f_0(u,v) = 0.33$ $f_1(u,v) = 3.66$ $f_2(u,v) = 4.66$

Step 2: Multi-layer graph

Encodes structural similarity between all node pairs

Step 3: Generate Context

- Context generated by biased random walk • O walking on multi-layer graph
- Walk in current layer with probability p
 - choose neighbor according to edge weight
 - **O** RW prefers more similar nodes
- Change layer with probability *1-p*
 - choose up/down according to edge weight
 - **O** RW prefer layer with less similar neighbors

Step 4: Learn Representation For each node, generate set of

- independent and relative short random walks
 - context for node; sentences of a language

- Train a neural network to learn latent representation for nodes
 - maximize probability of nodes within context
 - O Skip-gram (Hierarchical Softmax) adopted

Optimization

- Reduce time to generate/store multi-layer graph and context for nodes
- OPT1: Reduce length of degree sequences
 - **O** use pairs (degree, number of occurrences)
- OPT2: Reduce number of edges in multi-layer graph
 only *log n* neighbors per node
- OPT3: Reduce number of layers in multi-layer graph
 - **o** fixed (small) number of layers
- Scales quasi-linearly
 - **O** over 1 million nodes

Airport Classification

- struc2vec helps classification if labels related to role of nodes
- Air traffic network: airports, commercial flights
 - **O** Brazilian, USA, European (collected from public data)
 - airport activity measured in number of flights or movement of people
 - **O** four labels according to quartiles of activity
- struc2vec (and others) learn node representation from network
 - **O** no labels or activity used here

Airport Classification

Node representations used to train classifier
 o logistic regression, L2 normalization

struc2vec superior
performance
50% improvement in
Brazilian network
Activity related to
structure more than
neighbors or degree

Conclusion

- Structural identity: symmetry concept based on network, related to node roles
- struc2vec: flexible framework to learn representations for structural identity
 - multi-layer graph encodes structural similarity
- *struc2vec* helps classification based on roles
- Yet another useful kind of embedding
 - **O** not necessarily a substitute for others

Find the right embedding for your task!

struc2vec (source code and datasets)
https://github.com/leoribeiro/struc2vec

Scalability

G(n,p) network model, avg. deg 10 o avg running time over 10 networks, OPTs on

Time dominated by computing degree sequences of rings (yet to be optimized)

Distances

Euclidean distance
 distribution in mirrored
 Karate network

mirrored pairs much closer than all pairs not for node2vec

Robustness

Structural similarity under edge removal

O G is a social network

O each edge present in $G_{1,2}$ with prob *s*

