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Node Representations

] Map network nodes into Euclidean space
O aka. network embedding
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Structural Identity

] Nodes in networks have specific roles
O eg., individuals, web pages, proteins, etc
] Structural identity

O identification of nodes based on network structure (no other
attribute)

O often related to role played by node
J Automorphism: strong structural equivalence

1 Red, Green: automorphism
d Purple, Brown: structurally similar




Related Work

word2vec: framework to embed words (from sentences)
into Euclidean space [arXiv'13]

deepwalk: embed network nodes generating sentences
through random walks [KDD’14]

node2vec: use biased random walks to generate sentences
[KDD’16]

Walk on original network
to generate context

rolx: use node-feature matrix to compute low rank matrix
for roles [KDD’12]
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struc’Zvec

Novel framework for node representations based on

structural identity
O structurally similar nodes close in space

Key ideas

Structural similarity does not depend on hop distance

O neighbor nodes can be different, far away nodes can be similar
Structural identity as a hierarchical concept

O depth of similarity varies

Flexible four step procedure
O operational aspect of steps are flexible



Step 1: Structural Similarity

. Hierarchical measure for structural similarity between two nodes
R (u): set of nodes at distance k from u (ring)
1 s(S): ordered degree sequence of set S

s(Ry(u)) =4 s(R,(u)) =1,3,4,4 s(R,(u)) =2,2,2,2
s(Ry(v)) =3 s(R,(v)) =4,4,4 s(R,(v)) = 1,2,2,2,2



Step 1: Structural Similarity

l g(Dl,DZ): distance between two ordered sequences
O cost of pairwise alignment: max(a,b) / min(a,b) -1
O optimal alignment by DTW in our framework

$(Ry(u)) =4 s(R,(u)) =1,3,4,4 s(R,(u)) =2,2,2,2
s(R,(v)) =3 s(R,(v)) =4,4,4 s(R,(v)) = 1,2,2,2,2
g(.,.)=0.33 g(.,.)=3.33 a(.,.)=1

] fk(u,v): structural distance between nodes u and v considering
first k rings

0 £,(uy) - £ (a,v) + gls(R (W), s(R,(v))

f.(u,v) =0.33 f,(u,v) = 3.66 f(u,v) =4.66



Step 2: Multi-layer graph

] Encodes structural similarity between all node pairs

Layer O
1 Each layer is weighted
complete graph Layer 1
O corresponds to similarity
hierarchies
1 Edge weights in layer k

O Wk(u,v) = exp{—fk(u,v)}
_1 Connect corresponding nodes
in adjacent layers Layer 4




Step 3: Generate Context

] Context generated by biased random walk
O walking on multi-layer graph
1 Walk in current layer with probability p
O choose neighbor according to edge weight
O RW prefers more similar nodes
1 Change layer with probability 1-p
O choose up/down according to edge weight
O RW prefer layer with less similar neighbors



STEP 4. Learn
Representation

] For each node, generate set of
independent and relative short

random walks
O context for node; sentences of a language

() Train a neural network to learn latent

representation for nodes

O maximize probability of nodes within
context

O Skip-gram (Hierarchical Softmax) adopted
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Optimization
Reduce time to generate/store multi-layer graph and
context for nodes
OPT1: Reduce length of degree sequences

O use pairs (degree, number of occurrences)

OPT2: Reduce number of edges in multi-layer graph
O only log n neighbors per node

OPT3: Reduce number of layers in multi-layer graph
O fixed (small) number of layers

Scales quasi-linearly
O over 1 million nodes



Barbell Network
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Mirrored
Karate
Network
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Airport Classification

] struc2vec helps classification if labels related to role of

nodes
J Air traffic network: airports, commercial flights
O Brazilian, USA, European (collected from public data)
O airport activity measured in number of flights or movement
of people
O four labels according to quartiles of activity
] struc2vec (and others) learn node representation from

network
O no labels or activity used here



Airport Classification

] Node representations used to train classifier
O logistic regression, L2 normalization
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Conclusion

Structural identity: symmetry concept based on
network, related to node roles
struc2vec: flexible framework to learn representations

for structural identity
O multi-layer graph encodes structural similarity

struc2vec helps classification based on roles

Yet another useful kind of embedding
O not necessarily a substitute for others

Find the right embedding for your task!




Thank You!
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J Questions and comments?
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1 struc2vec (source code and datasets)
https://github.com/leoribeiro/struc2vec



log1p time (in seconds)
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Scalability

1 G(n,p) network model, avg. deg 10

O avg running time over 10 networks, OPTs on

—8— sampling + training time
—&k— sampling time
1.
linear (n)
1 2 3 4 5 6

l0g1n Nodes

(1 Time dominated by
computing degree
sequences of rings (yet
to be optimized)



Distances

J Euclidean distance
distribution in mirrored
Karate network
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Robustness

] Structural similarity under edge removal

O G is a social network

O each edge present in G with prob s
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